(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

+(x, 0) → x
+(x, s(y)) → s(+(x, y))
+(0, s(y)) → s(y)
s(+(0, y)) → s(y)

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
+(0, s(z0)) → s(z0)
s(+(0, z0)) → s(z0)
Tuples:

+'(z0, s(z1)) → c1(S(+(z0, z1)), +'(z0, z1))
+'(0, s(z0)) → c2(S(z0))
S(+(0, z0)) → c3(S(z0))
S tuples:

+'(z0, s(z1)) → c1(S(+(z0, z1)), +'(z0, z1))
+'(0, s(z0)) → c2(S(z0))
S(+(0, z0)) → c3(S(z0))
K tuples:none
Defined Rule Symbols:

+, s

Defined Pair Symbols:

+', S

Compound Symbols:

c1, c2, c3

(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

+'(z0, s(z1)) → c1(S(+(z0, z1)), +'(z0, z1))
+'(0, s(z0)) → c2(S(z0))
We considered the (Usable) Rules:

+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
+(0, s(z0)) → s(z0)
s(+(0, z0)) → s(z0)
And the Tuples:

+'(z0, s(z1)) → c1(S(+(z0, z1)), +'(z0, z1))
+'(0, s(z0)) → c2(S(z0))
S(+(0, z0)) → c3(S(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(+(x1, x2)) = [3] + [5]x2   
POL(+'(x1, x2)) = [3]x1 + [4]x2   
POL(0) = 0   
POL(S(x1)) = [5]   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(s(x1)) = [2] + x1   

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
+(0, s(z0)) → s(z0)
s(+(0, z0)) → s(z0)
Tuples:

+'(z0, s(z1)) → c1(S(+(z0, z1)), +'(z0, z1))
+'(0, s(z0)) → c2(S(z0))
S(+(0, z0)) → c3(S(z0))
S tuples:

S(+(0, z0)) → c3(S(z0))
K tuples:

+'(z0, s(z1)) → c1(S(+(z0, z1)), +'(z0, z1))
+'(0, s(z0)) → c2(S(z0))
Defined Rule Symbols:

+, s

Defined Pair Symbols:

+', S

Compound Symbols:

c1, c2, c3

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

S(+(0, z0)) → c3(S(z0))
We considered the (Usable) Rules:

+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
+(0, s(z0)) → s(z0)
s(+(0, z0)) → s(z0)
And the Tuples:

+'(z0, s(z1)) → c1(S(+(z0, z1)), +'(z0, z1))
+'(0, s(z0)) → c2(S(z0))
S(+(0, z0)) → c3(S(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(+(x1, x2)) = [1] + [2]x22 + x1·x2   
POL(+'(x1, x2)) = [2]x1 + [2]x22 + [2]x1·x2 + [3]x12   
POL(0) = [2]   
POL(S(x1)) = [1] + [2]x1   
POL(c1(x1, x2)) = x1 + x2   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(s(x1)) = [2] + [2]x1   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

+(z0, 0) → z0
+(z0, s(z1)) → s(+(z0, z1))
+(0, s(z0)) → s(z0)
s(+(0, z0)) → s(z0)
Tuples:

+'(z0, s(z1)) → c1(S(+(z0, z1)), +'(z0, z1))
+'(0, s(z0)) → c2(S(z0))
S(+(0, z0)) → c3(S(z0))
S tuples:none
K tuples:

+'(z0, s(z1)) → c1(S(+(z0, z1)), +'(z0, z1))
+'(0, s(z0)) → c2(S(z0))
S(+(0, z0)) → c3(S(z0))
Defined Rule Symbols:

+, s

Defined Pair Symbols:

+', S

Compound Symbols:

c1, c2, c3

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))